Abstract

In this work, we study a flexible compensation scheme for last-mile delivery where a company outsources part of the activity of delivering products to its customers to occasional drivers (ODs), under a scheme named crowdshipping. All deliveries are completed at the minimum total cost incurred with their vehicles and drivers plus the compensation paid to the ODs. The company decides on the best compensation scheme to offer to the ODs at the planning stage. We model our problem based on a stochastic and dynamic environment where delivery orders and ODs volunteering to make deliveries present themselves randomly within fixed time windows. The uncertainty is endogenous in the sense that the compensation paid to ODs influences their availability. We develop a deep reinforcement learning (DRL) algorithm that can deal with large instances while focusing on the quality of the solution: we combine the combinatorial structure of the action space with the neural network of the approximated value function, involving techniques from machine learning and integer optimization. The results show the effectiveness of the DRL approach by examining out-of-sample performance and that it is suitable to process large samples of uncertain data, which induces better solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call