Abstract
This paper presents a novel deep-reinforcement-learning-based method for analog circuit structure synthesis. It behaves like a designer, who learns from trials, derives design knowledge and experience, and evolves gradually to eventually figure out a way to construct circuit structures that can meet the given design specifications. Necessary design rules are defined and applied to set up the specialized environment of reinforcement learning in order to reasonably construct circuit structures. The produced circuit structures are then verified by the simulation-in-loop sizing. In addition, hash table and symbolic analysis techniques are employed to significantly promote the evaluation efficiency. Our experimental results demonstrate the sound efficiency, strong reliability, and wide applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.