Abstract

In recent years, energy management systems have become an emerging research topic. This concept allows the distribution of energy-intensive loads among various energy sources. An appropriate resource allocation scheme is necessary for the controller to efficiently allocate its energy resources in different operating conditions. Recent advances in artificial intelligence are instrumental to solve complex energy management problems by learning large repertoires of behavioral skills. This consists of hand-engineered policy and human-like expertise representations. In this paper, a deep reinforcement learning based resource allocation scheme is proposed for electric vehicles avoiding to work at the level of complex vehicle dynamics. Using multiple energy storage devices, like batteries, in parallel increases their maintenance due to their different behavior in various operating conditions. Thus, the proposed strategy aims to learn optimal policies to equilibrate the state of charge (SOC) of all batteries extending their lifespan and reducing their frequent maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.