Abstract

This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, where a UAV is employed as a base station to transmit covert data to a legitimate ground user, while ensuring that the data transmission cannot be detected by a warden. Aiming at maximizing the legitimate user’s average effective covert throughput (AECT), the UAV’s trajectory and transmit power are jointly optimized. Taking advantage of deep reinforcement learning (DRL) on solving dynamic and unpredictable problems, we develop a twin-delayed deep deterministic policy gradient aided covert transmission algorithm (TD3-CT), to determine the UAV’s optimal trajectory and transmit power. Furthermore, by introducing a reward shaping mechanism, the convergence of the algorithm is guaranteed. The experiment results show that the developed TD3-CT algorithm not only enables the covert transmission but also significantly improves its performance in termed of achieving a higher AECT, compared with the benchmark schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.