Abstract
Multi-input multi-output and non-orthogonal multiple access (MIMO-NOMA) Internet-of-Things (IoT) systems can improve channel capacity and spectrum efficiency distinctly to support real-time applications. Age of information (AoI) plays a crucial role in real-time applications as it determines the timeliness of the extracted information. In MIMO-NOMA IoT systems, the base station (BS) determines the sample collection commands and allocates the transmit power for each IoT device. Each device determines whether to sample data according to the sample collection commands and adopts the allocated power to transmit the sampled data to the BS over the MIMO-NOMA channel. Afterwards, the BS employs the successive interference cancellation (SIC) technique to decode the signal of the data transmitted by each device. The sample collection commands and power allocation may affect the AoI and energy consumption of the system. Optimizing the sample collection commands and power allocation is essential for minimizing both AoI and energy consumption in MIMO-NOMA IoT systems. In this paper, we propose the optimal power allocation to achieve it based on deep reinforcement learning (DRL). Simulations have demonstrated that the optimal power allocation effectively achieves lower AoI and energy consumption compared to other algorithms. Overall, the reward is reduced by 6.44% and 11.78% compared the to GA algorithm and random algorithm, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.