Abstract

The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network selects action and the other evaluates whether the selected action is accurate, and they modify themselves through a deep deterministic policy gradient(DDPG). These two neural networks are made up of multiple fully connected layers. Based on theories and simulations, this algorithm is more accurate than traditional PID control in solving the trajectory tracking of AUV in complex curves to a certain precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.