Abstract
A battery energy storage system (BESS) is an effective solution to mitigate real-time power imbalance by participating in power system frequency control. However, battery aging resulted from intensive charge–discharge cycles will inevitably lead to lifetime degradation, which eventually incurs high-operating costs. This study proposes a deep reinforcement learning-based data-driven approach for optimal control of BESS for frequency support considering the battery lifetime degradation. A cost model considering battery cycle aging cost, unscheduled interchange price, and generation cost is proposed to estimate the total operational cost of BESS for power system frequency support, and an actor–critic model is designed for optimising the BESS controller performance. The effectiveness of the proposed optimal BESS control method is verified in a three-area power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.