Abstract

It is well known that dynamic thermal line rating has the potential to use power transmission infrastructure more effectively by allowing higher currents when lines are cooler; however, it is not commonly implemented. Some of the barriers to implementation can be mitigated using modern battery energy storage systems. This paper proposes a combination of dynamic thermal line rating and battery use through the application of deep reinforcement learning. In particular, several algorithms based on deep deterministic policy gradient and soft actor critic are examined, in both single- and multi-agent settings. The selected algorithms are used to control battery energy storage systems in a 6-bus test grid. The effects of load and transmissible power forecasting on the convergence of those algorithms are also examined. The soft actor critic algorithm performs best, followed by deep deterministic policy gradient, and their multi-agent versions in the same order. One-step forecasting of the load and ampacity does not provide any significant benefit for predicting battery action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.