Abstract
The convergence of unmanned aerial vehicle (UAV)-aided mobile edge computing (MEC) networks and blockchain transforms the existing mobile networking paradigm. However, in the temporary hotspot scenario for intelligent connected vehicles (ICVs) in UAV-aided MEC networks, deploying blockchain-based services and applications in vehicles is generally impossible due to its high computational resource and storage requirements. One possible solution is to offload part of all the computational tasks to MEC servers wherever possible. Unfortunately, due to the limited availability and high mobility of the vehicles, there is still lacking simple solutions that can support low-latency and higher reliability networking services for ICVs. In this article, we study the task offloading problem of minimizing the total system latency and the optimal task offloading scheme, subject to constraints on the hover position coordinates of the UAV, the fixed bonuses, flexible transaction fees, transaction rates, mining difficulty, costs and battery energy consumption of the UAV. The problem is confirmed to be a challenging linear integer planning problem, we formulate the problem as a constrained Markov decision process. Deep Reinforcement Learning (DRL) has excellently solved sequential decision-making problems in dynamic ICVs environment, therefore, we propose a novel distributed DRL-based P-D3QN approach by using Prioritized Experience Replay strategy and the dueling double deep Q-network (D3QN) algorithm to solve the optimal task offloading policy effectively. Finally, experiment results show that compared with the benchmark scheme, the P-D3QN algorithm can bring about 26.24% latency improvement and increase about 42.26% offloading utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Design Automation of Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.