Abstract
This paper presents a Deep Reinforcement Learning (DRL) framework adapted and trained for Autonomous Vehicles (AVs) purposes. To do that, we propose a novel software architecture for training and validating DRL based control algorithms that exploits the concepts of standard communication in robotics using the Robot Operating System (ROS), the Docker approach to provide the system with portability, isolation and flexibility, and CARLA (CAR Learning to Act) as our hyper-realistic open-source simulation platform. First, the algorithm is introduced in the context of Self-Driving and DRL tasks. Second, we highlight the steps to merge the proposed algorithm with ROS, Docker and the CARLA simulator, as well as how the training stage is carried out to generate our own model, specifically designed for the AV paradigm. Finally, regarding our proposed validation architecture, the paper compares the trained model with other state-of-the-art traditional control approaches, demonstrating the full strength of our DL based control algorithm, as a preliminary stage before implementing it in our real-world autonomous electric car.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.