Abstract
Underwater acoustic (UWA) adaptive modulation (AM) requires feedback about channel state information (CSI) but the long propagation delays and time-varying features of UWA channels can cause the CSI feedback to be outdated. When the AM mode is selected by outdated CSI, the mismatch between the outdated CSI and the actual CSI during transmission degrades the performance and can even lead to communication failure. Reinforcement learning has the ability to learn the relationships between adaptive systems and the environment. This paper proposes a deep Q-network (DQN)-based AM method for UWA communication that uses a series of outdated CSI as the system input. Our study showed that it could extract channel information and select appropriate modulation modes in the expected channels more effectively than single Q-learning (QL) without needing a deep neural network structure. Furthermore, to mitigate any decision bias that was caused by partial observations of UWA channels, we improved the DQN-based AM by integrating a long short-term memory (LSTM) neural network, named LSTM-DQN-AM. The proposed scheme could enhance the DQN’s ability to remember and process historical input channel information, thus strengthening its relationship mapping ability for state-action pairs and rewards. The pool and sea experimental results demonstrated that the proposed LSTM-DQN-AM outperformed DQN-, QL- and threshold-based AM methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.