Abstract

AbstractProbe-based confocal laser endomicroscopy (pCLE) allows in-situ visualisation of cellular morphology for intraoperative tissue characterization. Robotic manipulation of the pCLE probe can maintain the probe-tissue contact within micrometre working range to achieve the precision and stability required to capture good quality microscopic information. In this paper, we propose the first approach to automatically regress the distance between a pCLE probe and the tissue surface during robotic tissue scanning. The Spatial-Frequency Feature Coupling network (SFFC-Net) was designed to regress probe-tissue distance by extracting an enhanced data representation based on the fusion of spatial and frequency domain features. Image-level supervision is used in a novel fashion in regression to enable the network to effectively learn the relationship between the sharpness of the pCLE image and its distance from the tissue surface. Consequently, a novel Feedback Training (FT) module has been designed to synthesise unseen images to incorporate feedback into the training process. The first pCLE regression dataset (PRD) was generated which includes ex-vivo images with corresponding probe-tissue distance. Our performance evaluation verifies that the proposed network outperforms other state-of-the-art (SOTA) regression networks.KeywordsRegressionFourier convolutionEndomicroscopy

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.