Abstract

Person re-identification aims to match images of the same person across disjoint camera views, which is a challenging problem in video surveillance. The major challenge of this task lies in how to preserve the similarity of the same person against large variations caused by complex backgrounds, mutual occlusions and different illuminations, while discriminating the different individuals. In this paper, we present a novel deep ranking model with feature learning and fusion by learning a large adaptive margin between the intra-class distance and inter-class distance to solve the person re-identification problem. Specifically, we organize the training images into a batch of pairwise samples. Treating these pairwise samples as inputs, we build a novel part-based deep convolutional neural network (CNN) to learn the layered feature representations by preserving a large adaptive margin. As a result, the final learned model can effectively find out the matched target to the anchor image among a number of candidates in the gallery image set by learning discriminative and stable feature representations. Overcoming the weaknesses of conventional fixed-margin loss functions, our adaptive margin loss function is more appropriate for the dynamic feature space. On four benchmark datasets, PRID2011, Market1501, CUHK01 and 3DPeS, we extensively conduct comparative evaluations to demonstrate the advantages of the proposed method over the state-of-the-art approaches in person re-identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.