Abstract
During the past decade, both multi-label learning and zero-shot learning have attracted huge research attention, and significant progress has been made. Multi-label learning algorithms aim to predict multiple labels given one instance, while most existing zero-shot learning approaches target at predicting a single testing label for each unseen class via transferring knowledge from auxiliary seen classes to target unseen classes. However, relatively less effort has been made on predicting multiple labels in the zero-shot setting, which is nevertheless a quite challenging task. In this work, we investigate and formalize a flexible framework consisting of two components, i.e., visual-semantic embedding and zero-shot multi-label prediction. First, we present a deep regression model to project the visual features into the semantic space, which explicitly exploits the correlations in the intermediate semantic layer of word vectors and makes label prediction possible. Then, we formulate the label prediction problem as a pairwise one and employ Ranking SVM to seek the unique multi-label correlations in the embedding space. Furthermore, we provide a transductive multi-label zeroshot prediction approach that exploits the testing data manifold structure. We demonstrate the effectiveness of the proposed approach on three popular multi-label datasets with state-of-theart performance obtained on both conventional and generalized ZSL settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.