Abstract

Deep convolutional neural networks have been widely used in single image super-resolution (SISR) with great success. However, the performance and efficiency of such models need to be improved for practical applications. In this paper, a novel deep quantification down-plain-upsampling (QDPU) network for SISR is proposed. In the framework, a down-plain-upsampling (DPU) residual block based on U-Net is firstly designed to reduce the computational cost by transforming the spatial scale of feature maps without sacrificing the reconstruction performance. Then, to better transmit low-level features to the reconstruction layer, we construct quantification skip-connection modules to integrate the outputs of the DPU residual blocks. Finally, QDPU is developed by stacking the DPU residual blocks with multiple skip-connections to reconstruct high-resolution images and reduce the computational burden. Quantitative and qualitative evaluations of the reconstruction results on four benchmark datasets show that the proposed method can achieve better performance compared with several state-of-the-art SISR methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.