Abstract
Distribution network reconfiguration (DNR) has proved to be an economical and effective way to improve the reliability of distribution systems. As optimal network configuration depends on system operating states (e.g., loads at each node), existing analytical and population-based approaches need to repeat the entire analysis and computation to find the optimal network configuration with a change in system operating states. Contrary to this, if properly trained, deep reinforcement learning (DRL)-based DNR can determine optimal or nearoptimal configuration quickly even with changes in system states. In this paper, a Deep Q Learning-based framework is proposed for the optimal DNR to improve reliability of the system. An optimization problem is formulated with an objective function that minimizes the average curtailed power. Constraints of the optimization problem are radial topology constraint and all nodes traversing constraint. The distribution network is modeled as a graph and the optimal network configuration is determined by searching for an optimal spanning tree. The optimal spanning tree is the spanning tree with the minimum value of the average curtailed power. The effectiveness of the proposed framework is demonstrated through several case studies on 33-node and 69node distribution test systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.