Abstract

Abstract This paper considers uplink solar-powered cognitive radio networks (CRNs) where multiple secondary users (SUs) transmit data to a secondary base station (SBS) by sharing a licensed channel of a primary system. A deep Q-learning (DQL) algorithm, which combines non-orthogonal multiple access (NOMA) and time division multiple access (TDMA) techniques, is proposed to maximize the long-term throughput of the system. By using our scheme, the agent (i.e. the SBS) can obtain the optimal decision by interacting with the environment to learn about system dynamics. Simulation results validate the superiority of the performance under the proposed scheme, compared with traditional schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.