Abstract

In this article, we propose a deep Q-learning based algorithm for optimal resource allocation in energy harvested cognitive radio networks (EH-CRN). In EH-CRN, channel resources of primary users (PU) networks are shared with secondary users (SU) and energy harvesting allows nodes of the CRN to acquire energy from the environment for operation sustainability. However, amount of energy harvested from the environment is not fixed and requires dynamic allocation of resources for obtaining optimum network and throughput capacity. In this work, we overcome the limitations of existing Q-learning based resource allocation schemes which are constrained by large state-space systems and have slow convergence. Proposed deep Q-learning based algorithm improves the resource allocation in EH-CRN, while considering quality of service (QoS), energy and interference constraints. Simulation results show that proposed algorithm provide improved convergence and better resource utilization compared to other techniques in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.