Abstract

Automatic semantic segmentation in 2D echocardiography is vital in clinical practice for assessing various cardiac functions and improving the diagnosis of cardiac diseases. However, two distinct problems have persisted in automatic segmentation in 2D echocardiography, namely the lack of an effective feature enhancement approach for contextual feature capture and lack of label coherence in category prediction for individual pixels. Therefore, in this study, we propose a deep learning model, called deep pyramid local attention neural network (PLANet), to improve the segmentation performance of automatic methods in 2D echocardiography. Specifically, we propose a pyramid local attention module to enhance features by capturing supporting information within compact and sparse neighboring contexts. We also propose a label coherence learning mechanism to promote prediction consistency for pixels and their neighbors by guiding the learning with explicit supervision signals. The proposed PLANet was extensively evaluated on the dataset of cardiac acquisitions for multi-structure ultrasound segmentation (CAMUS) and sub-EchoNet-Dynamic, which are two large-scale and public 2D echocardiography datasets. The experimental results show that PLANet performs better than traditional and deep learning-based segmentation methods on geometrical and clinical metrics. Moreover, PLANet can complete the segmentation of heart structures in 2D echocardiography in real time, indicating a potential to assist cardiologists accurately and efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call