Abstract
Abstract In this study, a novel hydrophilic-hydrophobic composite membrane was prepared and used in a pervaporative desalination of NaCl-water solution and seawater. For this purpose, polyether block amide (PEBA) was selected as membrane matrix. Zeolite 3A was incorporated to PEBA polymer for facilitating the water permeation through the membrane. The surface morphologies of the pristine and composite membranes were examined by scanning electron microscopy. Thermogravimetric analyses of the pristine and composite membranes were performed by adjusting the zeolite 3A concentration in the PEBA polymer. The effect of the zeolite addition on membrane’s surface hydrophilicity was analyzed using contact angle measurement. Firstly, influences of zeolite content, feed temperature and NaCl concentration on pervaporative desalination performances were performed in the pervaporation of NaCl-water solution. All membranes exhibited excellent performance, and the salt rejection of >99.5% and flux of >2.07 kg m −2 h −1 were achieved. Secondly, seawater desalination was performed. Effect of zeolite addition at a given temperature was also investigated. The better salt rejection was obtained as 99.81% accompanied with a very good flux of 4.57 kg m −2 h −1 in pervaporative seawater desalination at 40 °C using 20 wt.% zeolite 3A incorporated membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.