Abstract

Cu(II)-EDTA is a highly stable typical metal-organic complex in a wide pH range (3.0–12.0) and it is difficult to deeply purify Cu(II) by conventional precipitation methods. In this study, Fe(III) replacement/diethyldithiocarbamate (DDTC) precipitation combined process is proposed as a promising strategy to achieve the deep purification of Cu(II) from Cu(II)-EDTA acidic wastewater. The underlying mechanism has also been systematically elucidated by chemical equilibriums, experiments, and density functional theory (DFT) calculations, laying a foundation for the development and application. Chemical equilibriums show that Fe(III) replacement favors the stoichiometric release of Cu(II) from Cu(II)-EDTA and the formation of Fe(III)-EDTA complex under acidic conditions. Experimentally, Cu(II) is removed (over 99.99%) and deeply purified (under 0.008 mg/L) under the optimal conditions, which is lower than the most stringent discharge standards of copper ions in electroplating effluent (<0.5 mg/L, China). DFT calculations reveal that DDTC could further precipitate the released free copper ions via the carbon disulfide (–C(=S)–S) chelating group while exhibiting a slight effect on the Fe(III) in Fe(III)-EDTA. Considering these results, the electronic structures of Cu(II) and Fe(III), as well as their interaction with EDTA and DDTC ligands, are discussed to understand the mechanism of Fe(III)/DDTC process. By introducing a low dosage of Fe(III), the DDTC could efficiently purify Cu(II) from the Cu(II)-EDTA acid wastewater and realize the near-zero discharge of metal pollutants in metal-organic complex wastewater. It is believed that the main findings may benefit the water pollution reduction and comprehensive recycling of metal resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call