Abstract

The ability of nanomotors to promote the deep penetration of themselves and the loaded drugs in diseased tissues has been proposed and confirmed. However, whether such motion behavior of the nanomotors can also promote deep penetration of micrometer-sized immune cells in the diseased microenvironment, which is important for the immunotherapy of some diseases, has not been mentioned. Herein, we construct a nitric oxide (NO)-driven nanomotor that can move in the tumor microenvironment, focusing on its motion behavior and the role of NO, the beneficial product released during movement from this kind of nanomotor, in regulating the infiltration behavior and activity of immune cells. It can be found that the drug-loaded nanomotors with both NO-releasing ability and motility can promote the normalization of the tumor vasculature system and the degradation of the intrinsic extracellular matrix (ECM), which can significantly improve the tumor infiltration ability of T cells in vivo. The efficiency of T-cell infiltration in tumor tissue in vivo increased from 2.1 to 28.2%. Both subcutaneous and intraperitoneal implantation tumor models can validate the excellent antitumor effect of drug-loaded NO-driven nanomotors. This combination of motility of the power source from nanomotors and their physiological function offers a design idea for therapeutic agents for the future immunotherapy of many diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.