Abstract

SecA protein, a principal component of the protein export machinery of Escherichia coli, is found both in the cytoplasm and inner membrane of cells. Previous in vitro and in vivo studies demonstrated that the interaction of SecA with the inner membrane requires the presence of physiological levels of anionic (acidic) phospholipids. In this report the degree of SecA insertion into model membranes and the conformational changes associated with this event have been examined. The extent of association of SecA with model membranes was determined by photolabeling with a hydrophobic reagent, and the depth of insertion of the protein into the phospholipid bilayer was determined by the amount of quenching of SecA fluorescence by both brominated and spin-labeled phospholipids. These methods demonstrated that SecA penetrates deep within the acyl chain region of the phospholipid bilayer. It was also found that SecA penetration into vesicles was associated with a major conformational change in the protein. This change can be induced by higher temperatures and involves a partial unfolding event as judged by differential scanning calorimetry, SecA fluorescence and increased sensitivity to proteolysis. These properties suggest the induction of a molten-globule-like conformation in a portion of the SecA polypeptide. This change was also induced at lower temperatures by the presence of membranes containing a physiological amount of the anionic phospholipid, phosphatidylglycerol. The partial unfolding and concomitant deep insertion of SecA into membranes may aid in the insertion of precursor proteins into the inner membrane and may influence possible interactions between SecA and the integral membrane export machinery components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.