Abstract
Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as general market dynamics. It needs to be noted that, without further modifications, the approach works only if the risk aversion is beyond a certain level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.