Abstract

AbstractActive nanostructured optical components show promise as potential building blocks for novel light‐based computing and data processing architectures. However, nanoscale all‐optical switches that have low activation powers and high‐contrast ultrafast switching have been elusive so far. Here, pump–probe measurements performed on amorphous‐Ge‐based micro‐resonator metasurfaces that exhibit strong resonant modes in the mid‐infrared are reported. Relative change is observed in transmittance of ΔT/T ≈ 1 with picosecond (down to τ ≈ 0.5 ps) free carrier relaxation rates, obtained with very low pump fluences of 50 μJ cm−2. These observations are attributed to efficient free carrier promotion, affecting light transmittance via high quality‐factor optical resonances, followed by an increased electron–phonon scattering of free carriers due to the amorphous crystal structure of Ge. Full‐wave simulations based on a permittivity model that describes free‐carrier damping through crystal structure disorder find excellent agreement with the experimental data. These findings offer an efficient and robust platform for all‐optical switching at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.