Abstract
We study the properties of nonparametric least squares regression using deep neural networks. We derive nonasymptotic upper bounds for the excess risk of the empirical risk minimizer of feedforward deep neural regression. Our error bounds achieve minimax optimal rate and improve over the existing ones in the sense that they depend polynomially on the dimension of the predictor, instead of exponentially on dimension. We show that the neural regression estimator can circumvent the curse of dimensionality under the assumption that the predictor is supported on an approximate low-dimensional manifold or a set with low Minkowski dimension. We also establish the optimal convergence rate under the exact manifold support assumption. We investigate how the prediction error of the neural regression estimator depends on the structure of neural networks and propose a notion of network relative efficiency between two types of neural networks, which provides a quantitative measure for evaluating the relative merits of different network structures. To establish these results, we derive a novel approximation error bound for the Hölder smooth functions using ReLU activated neural networks, which may be of independent interest. Our results are derived under weaker assumptions on the data distribution and the neural network structure than those in the existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Annals of Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.