Abstract

We achieve high aspect-ratio laser ablation of silicon with a strong nonlinear dependence on pulse duration while using a power density 10(6) times less than the threshold for typical multiphoton-mediated ablation. This is especially counter-intuitive as silicon is nominally transparent to the modulated continuous wave Yb:fiber laser used in the experiments. We perform time-domain finite-element simulations of thermal dynamics to investigate thermo-optical coupling and link the observed machining to an intensity-thresholded runaway thermo-optically nonlinear process. This effect, cascaded absorption, is qualitatively different from ablation observed using nanosecond-duration pulses and is general enough to potentially facilitate high-quality, high aspect-ratio, and economical processing of many materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call