Abstract

Photoacoustic imaging techniques have been extensively developed for biomedical applications, including functional and molecular imaging, due in part to their high optical contrast, high spatial resolution, and non-ionizing imaging properties. However, there are currently depth limitations in cellular-resolution, optically focused photoacoustic microscopy systems. In addition, most common photoacoustic systems need to be in contact with the sample through an ultrasound medium. In this work, by taking advantage of large photoacoustic initial pressures, all-optical non-contact optical resolution photoacoustic imaging is reported at depths beyond the optical transport mean-free path of the excitation wavelength. The proposed technique is called deep photoacoustic remote sensing (dPARS) microscopy. Visible pulsed excitation wavelengths are used to produce large initial-pressure-induced refractive index modulations in absorbing targets. These localized pressure rises create transient variations to the local scattering properties, which are detected as back-reflected intensity modulations from a deep-penetrating interrogation beam and do not require an interferometric detection pathway. Experiments demonstrate that dPARS is capable of providing optical resolution images to depths of 2.5 mm in tissue-mimicking scattering media. Signal-to-noise ratio ∼50 dB is reported for in vivo imaging of microvascular networks. Also, imaging of single red blood cells, oxygen saturation mapping, and deep-vascular imaging applications are demonstrated. dPARS’s capabilities such as remote sensing, deep optical resolution imaging, and high signal-to-noise ratio, may yield new opportunities for several pre-clinical and clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call