Abstract
The optimization of the problems significantly improves the solution of the complex problems. The reduction in the feature dimensionality is enormously salient to reduce the redundant features and improve the system accuracy. In this paper, an amalgamation of different concepts is proposed to optimize the features and improve the system classification. The experiment is performed on the facial expression detection application by proposing the amalgamation of deep neural network models with the variants of the gravitational search algorithm. Facial expressions are the movement of the facial components such as lips, nose, eyes that are considered as the features to classify human emotions into different classes. The initial feature extraction is performed with the local binary pattern. The extracted feature set is optimized with the variants of gravitational search algorithm (GSA) as standard gravitational search algorithm (SGSA), binary gravitational search algorithm (BGSA) and fast discrete gravitational search algorithm (FDGSA). The deep neural network models of deep convolutional neural network (DCNN) and extended deep convolutional neural network (EDCNN) are employed for the classification of emotions from imagery datasets of JAFFE and KDEF. The fixed pose images of both the datasets are acquired and comparison based on average recognition accuracy is performed. The comparative analysis of the mentioned techniques and state-of-the-art techniques illustrates the superior recognition accuracy of the FDGSA with the EDCNN technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.