Abstract
In recent times, humans who have been exposed to influenza A viruses (IAV) may not become hostile. Despite the fact that KLRD1 has been discovered as an influenza susceptibility biomarker, it remains to be seen if pre-exposure host gene expression can predict flu symptoms. In this paper, we enable the examination of flu using deep neural networks from input human gene expression datasets with various subtype viruses. This study enables the utilization of these datasets to forecast the spread of flu and can provide the necessary steps to eradicate the flu. The simulation is conducted to test the efficiency of the model in predicting the spread against various input datasets. The results of the simulation show that the proposed method offers a better prediction ability of 2.98% more than other existing methods in finding the spread of flu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evidence-Based Complementary and Alternative Medicine (Ecam)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.