Abstract
Out of all non-linguistic communications, one of the most popular is face expression and is capable of communicating effectively with others. We have number of applications of facial expressions in as sorted arenas comprising of medicine like psychology, security, gaming, Classroom communication and even commercial creativities. Owing to huge intra-class distinction it is still challenging to recognize the emotions automatically based on facial expression though it is a vigorous area of research since decades. Conventional lines for this approach are dependent on hand-crafted characteristics like Scale Invariant Feature Transform, Histogram of Oriented Gradient and Local Binary Patterns surveyed by a classifier which is applied on a dataset. Various types of architectures were applied for restored performance as Deep learning proved an outstanding feat. The goal of this study is to create a deep learning model on automatic facial emotion recognition FER. The proposed model efforts more on pulling out the crucial features, thereby, advances the expression recognition accuracy, and beats the competition on FER2013 dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.