Abstract

Deep neural networks (DNNs) have not been proven to detect blood loss (BL) or predict surgeon performance from video. To train a DNN using video from cadaveric training exercises of surgeons controlling simulated internal carotid hemorrhage to predict clinically relevant outcomes. Video was input as a series of images; deep learning networks were developed, which predicted BL and task success from images alone (automated model) and images plus human-labeled instrument annotations (semiautomated model). These models were compared against 2 reference models, which used average BL across all trials as its prediction (control 1) and a linear regression with time to hemostasis (a metric with known association with BL) as input (control 2). The root-mean-square error (RMSE) and correlation coefficients were used to compare the models; lower RMSE indicates superior performance. One hundred forty-three trials were used (123 for training and 20 for testing). Deep learning models outperformed controls (control 1: RMSE 489 mL, control 2: RMSE 431 mL, R2 = 0.35) at BL prediction. The automated model predicted BL with an RMSE of 358 mL (R2 = 0.4) and correctly classified outcome in 85% of trials. The RMSE and classification performance of the semiautomated model improved to 260 mL and 90%, respectively. BL and task outcome classification are important components of an automated assessment of surgical performance. DNNs can predict BL and outcome of hemorrhage control from video alone; their performance is improved with surgical instrument presence data. The generalizability of DNNs trained on hemorrhage control tasks should be investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call