Abstract
The mathematical statement of the problem of recognizing rivet joint defects in aircraft products is given. A computational method for the recognition of rivet joint defects in aircraft equipment based on video images of aircraft joints has been proposed with the use of neural networks YOLO-V5 for detecting and MobileNet V3 Large for classifying rivet joint states. A novel dataset based on a real physical model of rivet joints has been created for machine learning. The accuracy of the result obtained during modeling was 100% in both binary and multiclass classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.