Abstract

Automatic and accurate segmentation of pulmonary nodules in CT images can help physicians perform more accurate quantitative analysis, diagnose diseases, and improve patient survival. In recent years, with the development of deep learning technology, pulmonary nodule segmentation methods based on deep neural networks have gradually replaced traditional segmentation methods. This paper reviews the recent pulmonary nodule segmentation algorithms based on deep neural networks. First, the heterogeneity of pulmonary nodules, the interpretability of segmentation results, and external environmental factors are discussed, and then the open-source 2D and 3D models in medical segmentation tasks in recent years are applied to the Lung Image Database Consortium and Image Database Resource Initiative (LIDC) and Lung Nodule Analysis 16 (Luna16) datasets for comparison, and the visual diagnostic features marked by radiologists are evaluated one by one. According to the analysis of the experimental data, the following conclusions are drawn: (1) In the pulmonary nodule segmentation task, the performance of the 2D segmentation models DSC is generally better than that of the 3D segmentation models. (2) ’Subtlety’, ’Sphericity’, ’Margin’, ’Texture’, and ’Size’ have more influence on pulmonary nodule segmentation, while ’Lobulation’, ’Spiculation’, and ’Benign and Malignant’ features have less influence on pulmonary nodule segmentation. (3) Higher accuracy in pulmonary nodule segmentation can be achieved based on better-quality CT images. (4) Good contextual information acquisition and attention mechanism design positively affect pulmonary nodule segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call