Abstract

This study proposed a deep-neural-network (DNN) model for seismic ground motion prediction by utilizing a unified strong motion database by the National Research Institute for Earth Science and Disaster Resilience, and earthquake horizontal-to-vertical spectral ratio (EHVR) database in Japan. The model aims to enhance the accuracy of predictions by incorporating the EHVRs for complementing site effects, and utilizing existing ground motion prediction equations (GMPE) as the base model for source and propagation path effects. The hybrid approach enables the prediction of peak ground accelerations (PGAs), peak ground velocities (PGVs), and 5% damped absolute acceleration response spectra (SAs). After classifying the training and test sets from the database, the trained DNN models were applied on the test set to evaluate the performance of the predicted results. The accuracy assessment by the residuals, R-squared ( R2), and root mean square error (RMSE) between the predicted and observed values in the test set revealed the superior performance of the proposed model compared with the traditional GMPE with proxy-based site effects such as V S30s especially in predicting both the spectral amplitude and shape of SAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.