Abstract

In recent years, much research has found that dysregulation of glutarylation is associated with many human diseases, such as diabetes, cancer, and glutaric aciduria type I. Therefore, glutarylation identification and characterization are essential tasks for determining modification-specific proteomics. This study aims to propose a novel deep neural network framework based on word embedding techniques for glutarylation sites prediction. Multiple deep neural network models are implemented to evaluate the performance of glutarylation sites prediction. Furthermore, an extensive experimental comparison of word embedding techniques is conducted to utilize the most efficient method for improving protein sequence data representation. The results suggest that the proposed deep neural networks not only improve protein sequence representation but also work effectively in glutarylation sites prediction by obtaining a higher accuracy and confidence rate compared to the previous work. Moreover, embedding techniques were proven to be more productive than the pre-trained word embedding techniques for glutarylation sequence representation. Our proposed method has significantly outperformed all traditional performance metrics compared to the advanced integrated vector support, with accuracy, specificity, sensitivity, and correlation coefficient of 0.79, 0.89, 0.59, and 0.51, respectively. It shows the potential to detect new glutarylation sites and uncover the relationships between glutarylation and well-known lysine modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call