Abstract

BackgroundPerforming systematic reviews is a time-consuming and resource-intensive process.ObjectiveWe investigated whether a machine learning system could perform systematic reviews more efficiently.MethodsAll systematic reviews and meta-analyses of interventional randomized controlled trials cited in recent clinical guidelines from the American Diabetes Association, American College of Cardiology, American Heart Association (2 guidelines), and American Stroke Association were assessed. After reproducing the primary screening data set according to the published search strategy of each, we extracted correct articles (those actually reviewed) and incorrect articles (those not reviewed) from the data set. These 2 sets of articles were used to train a neural network–based artificial intelligence engine (Concept Encoder, Fronteo Inc). The primary endpoint was work saved over sampling at 95% recall (WSS@95%).ResultsAmong 145 candidate reviews of randomized controlled trials, 8 reviews fulfilled the inclusion criteria. For these 8 reviews, the machine learning system significantly reduced the literature screening workload by at least 6-fold versus that of manual screening based on WSS@95%. When machine learning was initiated using 2 correct articles that were randomly selected by a researcher, a 10-fold reduction in workload was achieved versus that of manual screening based on the WSS@95% value, with high sensitivity for eligible studies. The area under the receiver operating characteristic curve increased dramatically every time the algorithm learned a correct article.ConclusionsConcept Encoder achieved a 10-fold reduction of the screening workload for systematic review after learning from 2 randomly selected studies on the target topic. However, few meta-analyses of randomized controlled trials were included. Concept Encoder could facilitate the acquisition of evidence for clinical guidelines.

Highlights

  • Evidence-based medicine aims to provide treatment that matches a patient’s needs by integrating the best and latest scientific evidence and clinical skills [1]

  • To overcome some of these issues, we studied systematic reviews of randomized controlled trials cited in several recent international clinical guidelines to investigate whether an active machine learning system (Concept Encoder, Fronteo Inc) could reduce the workload and accelerate the review process while improving its precision

  • The systematic reviews and meta-analyses used in this study were cited in 5 recent clinical guidelines (93 from American Diabetes Association 2017 guidelines [15], 2 from American College of Cardiology guidelines for nonstatin therapy [16], 13 from American Heart Association 2017 guidelines for valvular disease [17], from American Heart Association 2017 guidelines for heart failure [18], from American Stroke Association 2015 guidelines [19])

Read more

Summary

Introduction

Evidence-based medicine aims to provide treatment that matches a patient’s needs by integrating the best and latest scientific evidence and clinical skills [1]. Performing systematic reviews and meta-analyses is vital to obtain data that can inform evidence-based clinical decisions as well as the development of clinical and public health guidelines [2]. When performing a systematic review, it is critical to minimize potential bias by identifying all relevant published articles through exhaustive and systematic screening of the literature, which can be an extremely time-consuming and resource-intensive process. The Cochrane collaboration mandates reinvestigation and updating of published systematic reviews and meta-analyses every 2 years to maintain the novelty and quality of evidence [3], but this is an onerous task. As a single systematic review or meta-analysis usually requires 1 to 2 years to complete, only one-third of all Cochrane reviews are updated on time [4], and many reviews are obsolete or missing [5,6]. Performing systematic reviews is a time-consuming and resource-intensive process

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.