Abstract

This paper proposes a deep neural network (DNN)-based method for predicting ore production by truck-haulage systems in open-pit mines. The proposed method utilizes two DNN models that are designed to predict ore production during the morning and afternoon haulage sessions, respectively. The configuration of the input nodes of the DNN models is based on truck-haulage conditions and corresponding operation times. To verify the efficacy of the proposed method, training data for the DNN models were generated by processing packet data collected over the two-month period December 2018 to January 2019. Subsequently, following training under different hidden-layer conditions, it was observed that the prediction accuracy of morning ore production was highest when the number of hidden layers and number of corresponding nodes were four and 50, respectively. The corresponding values of the determination coefficient and mean absolute percentage error (MAPE) were 0.99% and 4.78%, respectively. Further, the prediction accuracy of afternoon ore production was highest when the number of hidden layers was four and the corresponding number of nodes was 50. This yielded determination coefficient and MAPE values of 0.99% and 5.26%, respectively.

Highlights

  • In open-pit mines, ore loading and hauling material-handling operations account for approximately50% of the total mine-operation cost [1]

  • This paper proposed using deep neural network (DNN) models to predict ore production by truck-haulage systems in open-pit mines

  • Training data for two DNN models were generated by processing packet data obtained from a preselected mining site over a two-month period

Read more

Summary

Introduction

In open-pit mines, ore loading and hauling material-handling operations account for approximately50% of the total mine-operation cost [1]. In open-pit mines, ore loading and hauling material-handling operations account for approximately. It is essential to design a truck-haulage system that maximizes mine productivity and equipment-management efficiency and minimizes haulage cost [2]. The allocation phase in the simulation of truck-haulage systems involves selecting the type, size, number, and payload of fleets suitable for use in haulage operations. This is followed by a dispatch phase that assigns trucks to a specific shovel by considering ore production and equipment utilization [12].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.