Abstract

Reducing the input data of tactile sensory systems brings a large degree of freedom to real-world implementations from the perspectives of bandwidth and computational complexity. For this, in this letter, we suggest efficient active-cell formations with a high classification accuracy of tactile materials. By revealing that averaged Kullback–Leibler-divergence and common frequency component power to variance ratio are proportional to the classification accuracy, we showed that those methods can be useful in estimating valid active-cell formations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.