Abstract

The use of multimodal magnetic resonance imaging (MRI) to autonomously segment brain tumors and subregions is critical for accurate and consistent tumor measurement, which can help with detection, care planning, and evaluation. This research is a contribution to the neuroscience research. In the present work, we provide a completely automated brain tumor segmentation method based on a mathematical model and deep neural networks (DNNs). Each slice of the 3D picture is enhanced by the suggested mathematical model, which is then sent through the 3D attention U-Net to provide a tumor segmented output. The study includes a detailed mathematical model for tumor pixel enhancement as well as a 3D attention U-Net to appropriately separate the pixels. On the BraTS 2019 dataset, the suggested system is tested and verified. This proposed work will definitely help for the treatment of the brain tumor patient. The pixel level accuracy for tumor pixel segmentation is 98.90%. The suggested system architecture's outcomes are compared to those of current system designs. This study also examines the suggested system architecture's time complexity on various processing units with neuroscience approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.