Abstract

Multicamera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating microaerial vehicles (MAVs) with on-board cameras only. Deep neural networks (DNNs) often fail at detecting small-scale objects or those that are far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this letter is how to achieve on-board, online, continuous, and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real-robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.