Abstract
We examine here what type of predictive modelling, classification, or regression, using neural networks (NN), fits better the task of soft-demapping based post-processing in coherent optical communications, where the transmission channel is nonlinear and dispersive. For the first time, we present possible drawbacks in using each type of predictive task in a machine learning context, considering the nonlinear coherent optical channel equalization/soft-demapping problem. We study two types of equalizers based on the feed-forward and recurrent NNs, for several transmission scenarios, in linear and nonlinear regimes of the optical channel. We point out that even though from the information theory perspective the cross-entropy loss (classification) is the most suitable option for our problem, the NN models based on the cross-entropy loss function can severely suffer from learning problems. The latter translates into the fact that regression-based learning is typically superior in terms of delivering higher Q-factor and achievable information rates. In short, we show by empirical evidence that loss functions based on cross-entropy may not be necessarily the most suitable option for training communication systems in practical scenarios when overfitting- and vanishing gradients-related problems come into play.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.