Abstract
As a unified framework for graph neural networks, message passing-based neural network (MPNN) has attracted a lot of research interest and has been shown successfully in a number of domains in recent years. However, because of over-smoothing and vanishing gradients, deep MPNNs are still difficult to train. To alleviate these issues, we first introduce a deep hierarchical layer aggregation (DHLA) strategy, which utilizes a block-based layer aggregation to aggregate representations from different layers and transfers the output of the previous block to the subsequent block, so that deeper MPNNs can be easily trained. Additionally, to stabilize the training process, we also develop a novel normalization strategy, neighbor normalization (NeighborNorm), which normalizes the neighbor of each node to further address the training issue in deep MPNNs. Our analysis reveals that NeighborNorm can smooth the gradient of the loss function, i.e., adding NeighborNorm makes the optimization landscape much easier to navigate. Experimental results on two typical graph pattern-recognition tasks, including node classification and graph classification, demonstrate the necessity and effectiveness of the proposed strategies for graph message-passing neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.