Abstract
Over the last couple of decades, the quality of surgical interventions has improved owing to the use of computer vision and robotic assistance. One such application of computer vision, namely, detection of surgical tools in videos is gaining attention of the medical image processing community. The main motivation for detection, localization, and annotation of surgical tools is to develop applications for surgical wsorkflow analysis. Such an analysis can aid in report generation, real-time decision support, etc. Cataract surgery is one of the common surgical procedure where surgeons do have direct visual access to the surgical site. Extremely small tools are used for this procedure and the surgeons observe the surgical site through a surgical microscope. In such cases, detecting the presence of tools can act an additional aid to the surgeon as well as other surgical staffs. We propose a framework consisting of a Convolutional Neural Network (CNN) which learns to distinguish and detect the presence of various surgical tools by learning robust features from the frames of a surgical video. Various deep neural architectures are hence evaluated for the task of detecting tools. The baseline models used for the purpose are pretrained on Imagenet dataset and they render upto 50% prediction accuracy. All the experiments have been validated on the dataset released as part of the Cataracts Grand Challenge. A framework for localization and detection of tools has also been proposed, which is capable of extracting visual features from glimpses of an image, by adaptively selecting and processing only the selected regions at high resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.