Abstract
Simulation-based ultrasound (US) training can be an essential educational tool. Realistic US image appearance with typical speckle texture can be modeled as convolution of a point spread function with point scatterers representing tissue microstructure. Such scatterer distribution, however, is in general not known and its estimation for a given tissue type is fundamentally an ill-posed inverse problem. In this article, we demonstrate a convolutional neural network approach for probabilistic scatterer estimation from observed US data. We herein propose to impose a known statistical distribution on scatterers and learn the mapping between US image and distribution parameter map by training a convolutional neural network on synthetic images. In comparison with several existing approaches, we demonstrate in numerical simulations and with in vivo images that the synthesized images from scatterer representations estimated with our approach closely match the observations with varying acquisition parameters such as compression and rotation of the imaged domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.