Abstract

Variants in ion channel genes have classically been studied in low throughput by patch clamping. Deep mutational scanning is a complementary approach that can simultaneously assess function of thousands of variants. We have developed and validated a method to perform a deep mutational scan of variants in SCN5A, which encodes the major voltage-gated sodium channel in the heart. We created a library of nearly all possible variants in a 36 base region of SCN5A in the S4 voltage sensor of domain IV and stably integrated the library into HEK293T cells. In preliminary experiments, challenge with 3 drugs (veratridine, brevetoxin, and ouabain) could discriminate wild-type channels from gain- and loss-of-function pathogenic variants. High-throughput sequencing of the pre- and postdrug challenge pools was used to count the prevalence of each variant and identify variants with abnormal function. The deep mutational scan scores identified 40 putative gain-of-function and 33 putative loss-of-function variants. For 8 of 9 variants, patch clamping data were consistent with the scores. These experiments demonstrate the accuracy of a high-throughput in vitro scan of SCN5A variant function, which can be used to identify deleterious variants in SCN5A and other ion channel genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.