Abstract
Deep clustering incorporates embedding into clustering in order to find a lower-dimensional space suitable for clustering tasks. Conventional deep clustering methods aim to obtain a single global embedding subspace (aka latent space) for all the data clusters. In contrast, in this article, we propose a deep multirepresentation learning (DML) framework for data clustering whereby each difficult-to-cluster data group is associated with its own distinct optimized latent space and all the easy-to-cluster data groups are associated with a general common latent space. Autoencoders (AEs) are employed for generating cluster-specific and general latent spaces. To specialize each AE in its associated data cluster(s), we propose a novel and effective loss function which consists of weighted reconstruction and clustering losses of the data points, where higher weights are assigned to the samples more probable to belong to the corresponding cluster(s). Experimental results on benchmark datasets demonstrate that the proposed DML framework and loss function outperform state-of-the-art clustering approaches. In addition, the results show that the DML method significantly outperforms the SOTA on imbalanced datasets as a result of assigning an individual latent space to the difficult clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.