Abstract
Texture recognition is a challenging visual task as multiple perceptual attributes may be perceived from the same texture image when combined with different spatial context. Some recent works building upon Convolutional Neural Network (CNN) incorporate feature encoding with orderless aggregating to provide invariance to spatial layouts. However, these existing methods ignore visual texture attributes, which are important cues for describing the real-world texture images, resulting in incomplete description and inaccurate recognition. To address this problem, we propose a novel deep Multiple-Attribute-Perceived Network (MAP-Net) by progressively learning visual texture attributes in a mutually reinforced manner. Specifically, a multi-branch network architecture is devised, in which cascaded global contexts are learned by introducing similarity constraint at each branch, and leveraged as guidance of spatial feature encoding at next branch through an attribute transfer scheme. To enhance the modeling capability of spatial transformation, a deformable pooling strategy is introduced to augment the spatial sampling with adaptive offsets to the global context, leading to perceive new visual attributes. An attribute fusion module is then introduced to jointly utilize the perceived visual attributes and the abstracted semantic concepts at each branch. Experimental results on the five most challenging texture recognition datasets have demonstrated the superiority of the proposed model against the state-of-the-arts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.