Abstract

In the natural and social sciences, multifractal properties between two non-stationary time series are influenced not only by each other, but also by exogenous variables and historical data. However, traditional multifractal detrended cross-correlation analysis did not realize this problem, but directly explored the multifractal nature of time series. To eliminate the influence of exogenous variables and historical data as much as possible, the deep multifractal detrended cross-correlation analysis (DMF-DCCA) is developed to research the multifractal cross- correlation nature between two non-stationary time series. Furthermore, the effectiveness of DMF-DCCA has been validated using a simulated dataset and two real-world datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.