Abstract
Tool wear monitoring plays a key role in the machining industry to increase productivity and reduce downtime. The Data-driven monitoring techniques have been successfully applied in the tool wear prediction in recent years. However, the terrible environment and the varying machining parameters make the data quality and the distribution complex, which limits the performance of data-driven prediction models. How to build a model for different data distribution under different working conditions adaptively is an important research topic. To solve this problem, this paper proposed a new deep multi-task network based on sparse feature learning for tool wear prediction. By introducing the L21 norm and F-norm regularization term to the network loss function, the model can capture the tool wear characteristic sparsely from the input frequency spectrum. Experiment results on a machine tool show that the proposed method has a significant performance improvement in terms of predictive accuracy and numerical stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.